57 research outputs found

    Temporal and spatial variations in freshwater 14C reservoir effects: Lake Myvatn, Northern Iceland

    Get PDF
    Lake Mývatn is an interior highland lake in northern Iceland that forms a unique ecosystem of international scientific importance and is surrounded by a landscape rich in archaeological and palaeoenvironmental sites. A significant Freshwater 14C Reservoir Effect (FRE) has been identified in carbon from the lake at some Norse (c.870-1000 AD) archaeological sites in the wider region (Mývatnssveit). Previous AMS measurements indicated this FRE was ~1500-1900 14C years. Here we present the results of a study using stable isotope and 14C measurements to quantify the Mývatn FRE for both the Norse and modern periods. This work has identified a temporally variable FRE that is greatly in excess of previous assessments. New, paired samples of contemporaneous bone from terrestrial herbivores and omnivores (including humans) from Norse sites demonstrate at least some omnivore diets incorporated sufficient freshwater resources to result in a herbivore-omnivore age offset of up to 400 14C yrs. Modern samples of benthic detritus, aquatic plants, zooplankton, invertebrates and freshwater fish indicate an FRE in excess of 5000 14C yrs in some species. Likely geothermal mechanisms for this large FRE are discussed, along with implications for both chronological reconstruction and integrated investigation of stable and radioactive isotop

    Aphid Thermal Tolerance Is Governed by a Point Mutation in Bacterial Symbionts

    Get PDF
    Symbiosis is a ubiquitous phenomenon generating biological complexity, affecting adaptation, and expanding ecological capabilities. However, symbionts, which can be subject to genetic limitations such as clonality and genomic degradation, also impose constraints on hosts. A model of obligate symbiosis is that between aphids and the bacterium Buchnera aphidicola, which supplies essential nutrients. We report a mutation in Buchnera of the aphid Acyrthosiphon pisum that recurs in laboratory lines and occurs in field populations. This single nucleotide deletion affects a homopolymeric run within the heat-shock transcriptional promoter for ibpA, encoding a small heat-shock protein. This Buchnera mutation virtually eliminates the transcriptional response of ibpA to heat stress and lowers its expression even at cool or moderate temperatures. Furthermore, this symbiont mutation dramatically affects host fitness in a manner dependent on thermal environment. Following a short heat exposure as juveniles, aphids bearing short-allele symbionts produced few or no progeny and contained almost no Buchnera, in contrast to aphids bearing symbionts without the deletion. Conversely, under constant cool conditions, aphids containing symbionts with the short allele reproduced earlier and maintained higher reproductive rates. The short allele has appreciable frequencies in field populations (up to 20%), further supporting the view that lowering of ibpA expression improves host fitness under some conditions. This recurring Buchnera mutation governs thermal tolerance of aphid hosts. Other cases in which symbiont microevolution has a major effect on host ecological tolerance are likely to be widespread because of the high mutation rates of symbiotic bacteria and their crucial roles in host metabolism and development

    Crustal structure across the Grand Banks–Newfoundland Basin Continental Margin – I. Results from a seismic refraction profile

    Get PDF
    Author Posting. © Blackwell, 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 167 (2006): 127-156, doi:10.1111/j.1365-246X.2006.02988.x.A P-wave velocity model along a 565-km-long profile across the Grand Banks/Newfoundland basin rifted margin is presented. Continental crust ~36-kmthick beneath the Grand Banks is divided into upper (5.8-6.25 km/s), middle (6.3- 6.53 km/s) and lower crust (6.77-6.9 km/s), consistent with velocity structure of Avalon zone Appalachian crust. Syn-rift sediment sequences 6-7-km thick occur in two primary layers within the Jeanne d’Arc and the Carson basins (~3 km/s in upper layer; ~5 km/s in lower layer). Abrupt crustal thinning (Moho dip ~ 35º) beneath the Carson basin and more gradual thinning seaward forms a 170-km-wide zone of rifted continental crust. Within this zone, lower and middle continental crust thin preferentially seaward until they are completely removed, while very thin (<3 km) upper crust continues ~60 km farther seaward. Adjacent to the continental crust, high velocity gradients (0.5-1.5 s-1) define an 80-km-wide zone of transitional basement that can be interpreted as exhumed, serpentinized mantle or anomalously thin oceanic crust, based on its velocity model alone. We prefer the exhumed-mantle interpretation after considering the non-reflective character of the basement and the low amplitude of associated magnetic anomalies, which are atypical of oceanic crust. Beneath both the transitional basement and thin (<6 km) continental crust, a 200-kmwide zone with reduced mantle velocities (7.6-7.9 km/s) is observed, which is interpreted as partially (<10%) serpentinized mantle. Seaward of the transitional basement, 2- to 6-km-thick crust with layer 2 (4.5-6.3 km/s) and layer 3 (6.3-7.2 km/s) velocities is interpreted as oceanic crust. Comparison of our crustal model with profile IAM-9 across the Iberia Abyssal Plain on the conjugate Iberia margin suggests asymmetrical continental breakup in which a wider zone of extended continental crust has been left on the Newfoundland side.This research was supported by National Science Foundation (NSF) grants OCE-9819053 and OCE-0326714, by the National Sciences and Engineering Research Council of Canada (NSERC), and by the Danish National Research Foundation. B. Tucholke also acknowledges support from the Henry Bryant Bigelow Chair in Oceanography from Woods Hole Oceanographic Institution

    Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters

    Get PDF
    Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192–base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission

    Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    Get PDF
    BACKGROUND: Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. RESULTS: Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. CONCLUSIONS: In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy

    The Importance of Getting Names Right: The Myth of Markets for Water

    Full text link

    Regulation of Transcription in a Reduced Bacterial Genome: Nutrient-Provisioning Genes of the Obligate Symbiont Buchnera aphidicola

    No full text
    Buchnera aphidicola, the obligate symbiont of aphids, has an extremely reduced genome, of which about 10% is devoted to the biosynthesis of essential amino acids needed by its hosts. Most regulatory genes for these pathways are absent, raising the question of whether and how transcription of these genes responds to the major shifts in dietary amino acid content encountered by aphids. Using full-genome microarrays for B. aphidicola of the host Schizaphis graminum, we examined transcriptome responses to changes in dietary amino acid content and then verified behavior of individual transcripts using quantitative reverse transcriptase PCR. The only gene showing a consistent and substantial (>twofold) response was metE, which underlies methionine biosynthesis and which is the only amino acid biosynthetic gene retaining its ancestral regulator (metR). In another aphid host, Acyrthosiphon pisum, B. aphidicola has no functional metR and shows no response in metE transcript levels to changes in amino acid concentrations. Thus, the only substantial transcriptional response involves the one gene for which an ancestral regulator is retained. This result parallels that from a previous study on heat stress, in which only the few genes retaining the global heat shock promoter showed responses in transcript abundance. The irreversible losses of transcriptional regulators constrain ability to alter gene expression in the context of environmental fluctuations affecting the symbiotic partners

    Extensive Proliferation of Transposable Elements in Heritable Bacterial Symbionts▿ †

    No full text
    We found that insertion sequence (IS) elements are unusually abundant in the relatively recently evolved bacterial endosymbionts of maize weevils. Because multicopy elements can facilitate genomic recombination and deletion, this IS expansion may represent an early stage in the genomic reduction that is common in most ancient endosymbionts
    corecore